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Abstract 
 

The model-based approach, used by the JeNo code to predict jet noise spectral directivity, is 
described. A linearized form of Lilley’s equation governs the non-causal Green’s function of interest, 
with the non-linear terms on the right hand side identified as the source. A Reynolds-averaged Navier-
Stokes (RANS) solution yields the required mean flow for the solution of the propagation Green’s 
function in a locally parallel flow. The RANS solution also produces time- and length-scales needed to 
model the non-compact source, the turbulent velocity correlation tensor, with exponential temporal and 
spatial functions. It is shown that while an exact non-causal Green’s function accurately predicts the 
observed shift in the location of the spectrum peak with angle as well as the angularity of sound at low to 
moderate Mach numbers, the polar directivity of radiated sound is not entirely captured by this Green’s 
function at high subsonic and supersonic acoustic Mach numbers. Results presented for unheated jets in 
the Mach number range of 0.51 to 1.8 suggest that near the peak radiation angle of high-speed jets, a 
different source/Green’s function convolution integral may be required in order to capture the peak 
observed directivity of jet noise. A sample Mach 0.90 heated jet is also discussed that highlights the 
requirements for a comprehensive jet noise prediction model. 
 
 

1. Nomenclature 
 

xi Cartesian coordinate components; i = 1 denotes axial direction 
yi Cartesian coordinate components  
ξi displacement vector components 
ξ displacement vector magnitude 
t time 
ρ density 
p pressure 
T temperature  
Tr temperature ratio, plenum to ambient 
vi velocity component 
ui fluctuating velocity component 
c speed of sound, = Tℜγ  
U axial mean velocity 
UJ velocity at jet exit 
DJ jet diameter 
D Green’s function directivity function. 
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L Pridmore-Brown operator 
Π reduced pressure ∏ ≡ (1/γ) 1n(p/po)  
δij Kronecker delta 
δ delta function 
γ specific heat ratio 
π ' dependent variable for pressure 
ζi source component, (eq. 3) 
f frequency  
fm mth mode of solution to second-order compressible Rayleigh operator 
h  enthalpy  
r Cartesian coordinate, radial component 
R spherical coordinate component, radius; distance to observer 
θ spherical coordinate component, polar angle 
ϕ spherical coordinate component, azimuthal angle 
ω frequency, 2πf  
M Mach number 
St Strouhal number, ωDJ/(2πUJ) 
He Helmholtz number, ωDJ /(2πc∞) 
k acoustic wavenumber 
τ time delay coordinate 
τo turbulent timescale 
l  turbulent lengthscale 
κ turbulent kinetic energy 
ε turbulent dissipation rate 
Iijkl two-point, fourth-order space-time correlation of velocity 
Rij two-point, second-order, spatial correlation of velocity 
h temporal correlation function 
H Fourier transform of temporal correlation function h 
N non-compactness factor 

(cl  calibration constant associated with lengthscale 
cτ  calibration constant associated with timescale 
Am calibration constant associated with conversion of turbulent kinetic energy to acoustic energy 
α calibration constant to remove singularity of Doppler factor 
F master spectrum, spectral function at θ  = 90° 
G , $G  Green’s functions 
()c () convecting 
()∞ () at far-field 
()’ fluctuating portion of () 
()s () evaluated at source location 
()t () evaluated at transverse location 
[]m [] in moving frame 
( ) time average of () 
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2. Introduction 
 
There is an ever-increasing demand on the aeroacoustics community to achieve new levels of 

accuracy in noise prediction in order to meet the stringent regulations set for aircraft noise reduction. Jet 
noise is of particular interest because of its dominant contribution to the noise radiated from aircraft 
engines operating at high thrust conditions during takeoff. As part of an ongoing research program at the 
NASA Glenn Research Center, the JeNo code is being developed to provide the state-of-the-art in jet 
noise source modeling and propagation. Since jet mixing-noise is broadband, with frequencies that cover 
a full three-octave range, a successful source model needs to bring in enough physics to predict a 
reasonably acceptable spectral density at various operating conditions.  

This document, Part 1: JeNo Technical Manual, details the theoretical development of JeNo version 
1.0. It discusses the jet physics being captured by the code, the mathematical derivation of the equations, 
the assumptions and models which are captured in the computer code. This document is for the user who 
wishes to understand the limitations of JeNo with either an eye to understanding the output or to 
improving its shortcomings. A separate document, Part 2: JeNo Users Manual, covers the operation of 
the code from the computer user’s point of view, including code architecture, input and output formats, 
and examples. 
 

2.1 Jet Noise Source Physics from Observations 
 

Experimental observations of jet noise spectra and directivity for a wide range of shock-free operating 
conditions show that a bi-modal description best fits a typical spectrum. This has prompted many to 
propose a two-source generation mechanism. In the broadside angles, jet noise is usually attributed to 
small-scale turbulence. Prediction schemes such as MGBK (ref. 1) or Tam and Auriault (ref. 2) scale the 
sound spectral density to 7/2 power of turbulence kinetic energy and use a Reynolds-averaged Navier-
Stokes (RANS) solution to estimate the source strength and its spectral shape. The general shape of the 
spectrum and its roll-off at the high- and low ends of its frequency range depends on the proposed source 
model as well as the accuracy of the propagation filter, i.e., the Green’s Function (GF). The non-causal 
GF solution of interest may be obtained from the inhomogeneous Lilley’s equation or directly from 
linearized Euler equations using numerical methods or some form of analytical approximation. This is the 
source being addressed in version 1.0 of the JeNo code. 

At aft angles, the non-causal GF solution predicts a strong increase in sound, but not as strong as 
observed in jet experiments at supersonic Mach numbers. A second mechanism for sound generation is 
commonly proposed, being attributed to the large-scale turbulent structures, which are considered as a 
superposition of instability modes of the mean flow. It has been shown that when the base flow is 
properly represented as a non-parallel jet, these waves grow in amplitude and then decay farther 
downstream. They become increasingly more efficient with jet speed, and at small angles from the 
downstream axis. While this mechanism is often called a second source, a recent study (ref. 3) describes 
instability waves as a second ‘conduit’ that helps carry the sound from the source region to the far field 
rather than acting as a separate source. In this view, a two-component spectrum may be thought of as the 
contributions from two completely different Green’s functions acting on the same source. This second 
‘conduit’, expressed by a causal GF, is not addressed in version 1.0 of the JeNo code. 

To summarize, version 1.0 of JeNo is applicable to cold, round jets of subsonic velocity. It correctly 
predicts sound for all angles at such conditions. It does not correctly predict hot jets, jets of strong 
asymmetry, or jets with supersonic (relative to ambient speed of sound) exit velocities. 
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2.2 Outline of JeNo Theoretical Development 
 
The non-causal GF described in the present paper is derived from Lilley’s equation. A good 

approximation to the base flow that is useful for jets and adopted here is a unidirectional transversely 
sheared mean flow or a locally parallel flow. From a practical point of view, this flow provides added 
numerical efficiency with minimal degradation in accuracy. Deviations from a true spreading jet are 
usually limited to a small angle range close to the jet axis and near the zone of silence where the 
contribution from a causal GF is likely to dominate. 

Upon linearizing the Navier-Stokes equations about the base flow (for an ideal gas), the nonlinear 
terms are moved to the right-hand side to obtain the inhomogeneous Pridmore-Brown equation 

(ref. 4). The right-hand side terms, all second-order in fluctuating variables, are now identified as the 
equivalent sources. Fluid viscosity and heat conduction are considered to be relatively unimportant in 
noise generation and are neglected compared to other source terms. Two of the three remaining sources 
are quadrupole in nature and are referred to as the self- and shear-noise source terms. The third source has 
a dipole character and is associated with temperature fluctuations. 

Solving the equations for the far-field observer then consists of two tasks: modeling the source terms 
and finding the solution to the Pridmore-Brown equation. The first is done by assuming functional forms 
for the different terms and applying proper scaling factors from turbulence models, usually obtained from 
CFD. The second is done by constructing a Green’s function (GF) which satisfies the propagation 
equation for a point source embedded in the flow, which is also usually known from CFD. This GF then 
acts as a filter to describe the relationship between the sources and the observer. 

A model-based approach usually relies on averaged equations of motion. Statistical properties of 
noise sources, as described by a two-point space-time correlation, are entirely modeled. A physics-based 
modeling of sources can be improved as our understanding of the underlying generation mechanism and 
turbulence details advances. The current source models represent current understanding of the turbulence 
correlation tensor and will undoubtedly be improved upon in future versions. It is important that the 
source model be kept independent of propagation effects so that improvements in the source model not be 
masked by improper fixes to the propagation portion of the code. 

In addition to the source description, the propagation filter needs to be accurate enough to capture 
refraction and shielding of sound for a wide range of frequencies, angles, and operating conditions. A 
review of some commonly used high-frequency asymptotic forms of the GF following the usual WKB 
methods and comparison with the numerical solution (ref. 5) demonstrates that these solutions generally 
remain accurate down to a Strouhal number of 0.5. However, the extension of the WKB solution to the 
more general jets with multiple turning points presents additional challenges and may require a numerical 
calculation of the near-field solution in order to satisfy the matching conditions. Indeed, the initial version 
of JeNo differs from its ancestor, the MGBK code, primarily in its use of the more rigorous GF solution, 
obtained using adjoint methods. 

 
2.3 Outline of Document 

 
The objective of this paper is to present the details of the source as well as the GF in a model-based 

prediction approach. The analytical solution to the intensity calculations using an exact GF is given in 
section 3. Section 4 shows the modeling of the two-point velocity correlations using an exponential form 
to describe both spatial and temporal functions. The general features of the 90° spectrum are addressed in 
section 5. A parametric study of the GF using a RANS-based mean flow is discussed in section 6. In 
particular, it is demonstrated that the mean flow could have an amplifying effect on radiated sound at 
certain observer angles and at certain source locations. More importantly, it is argued that regardless of 
the source definition used in the convolution integral, a non-causal GF, due to its sizable zone of silence, 
is incapable of capturing the observed directivity of high-speed jets at their peak radiation angle. Sample 
noise predictions are presented in section 7 for a number of unheated jets in the Mach number range 0.51 
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through 1.80, and compared with data recently collected at the Small Hot Jet Acoustic Rig (SHJAR) at 
the NASA Glenn Research Center. Section 8 studies a Mach 0.90 heated jet at a stagnation temperature 
ratio of 3.14. The hot jet exercise considers two important scaling rules related to the GF, and proposes a 
number of turbulence-related issues that need to be examined carefully prior to the addition of a heat-
related source. A summary of assumptions adopted in the present analysis will be reviewed in section 9. 
Requirements for developing a comprehensive physics-based jet noise prediction algorithm will also be 
discussed. 
 
 

3. The Governing Equations 
 

Lilley’s third-order wave equation (ref. 6) may be linearized about a unidirectional transversely 
sheared mean flow 

 
 ( ) ( )3,23,21 , constant, xxTTxxUUp ooiio === δ . 

 
and rearranged to a form commonly referred to as the Pridmore-Brown (ref. 4) equation 
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Here Γ is the source, 

rx x x x≡ ( , , )1 2 3  are the Cartesian coordinates and x1 is in the stream-wise 
direction, p is pressure and po is the mean pressure, (i.e., p p po≡ + ' ), ∏ ≡ (1/γ) 1n(p/po), 
c2 = γℜTo is the mean sound speed, t is time, and the convective derivative operator is 
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When pressure fluctuations p' are small relative to mean pressure po, the dependent variable is 

approximated as Π ≅ p po'/( )γ . Goldstein (refs. 7 and 8) carried out a second-order expansion of 
equation (1) and introduced a new dependent variable π ' /≡ +Π Π2 2 to show that 
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 ζ i
i j

j i

u u
x

c
x

≡
∂

∂
+

∂Π
∂

( )
( )' ,2  (3) 

 
where ui ≡ vi–δi1U denotes the velocity fluctuations. The source term (3) may be approximated as 

ζi ≅ ∂(uiuj)/∂xj once fluctuations in sound speed ( )' ( )c T To
2 = ℜ −γ  are neglected (a valid approximation 

when jet is isothermal). With the dependent variable approximated asπ ' ≅ Π  
(see ref. 9) for the equation governing ∏2), equation (2) becomes 



NASA/TM—2005-213827 6 

 L D
Dt

u u
x x

U
x

u u
x x

p
p

i j

i j i

i j

j o

Π Π≅
∂
∂ ∂

−
∂
∂

∂
∂ ∂

≅
2 2

1

2
( ) ( )

, '
γ

 (4) 

 
An alternate definition for the dependent variable is π γ' ( / ) /≡ −p po

1 1. As shown in (ref. 7), with 
this new parameter, equation (2) becomes an exact rearrangement of the Euler equations once the source 
is defined as 
 

 ζ π γ π
i

j
i j
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u u
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≡

∂
∂

+ + −
∂
∂

( ' ) ( ) ' '1 1 h  

 
This latter source reduces to that defined in equation (3) when enthalpy fluctuation h'  is written as 

h' ( )( )'= −γ 1 2c  and if π ' is considered small relative to unity. 
The equivalent sources of sound in a Lilley-type analogy are second-order in fluctuating variables. It 

has been pointed out repeatedly in the literature that the main difference between Lighthill and Lilley’s 
formulation of the acoustic analogy is a separation of the propagation effect from the source in the latter 
formulation, which presumably places less demand on the details of the source modeling. The GF 
calculations described in section 6 clearly show the significance of the Lilley operator in isolating the 
propagation effect. 

There have been numerous efforts in the past half-century to experimentally measure the actual 
sources of sound in a turbulent flow. Measurement techniques such as phased-array can measure the 
relative source strength and its frequency content at various regions in a jet. Particle Image Velocimetry 
(PIV) methods have been instrumental in turbulence and correlation measurements. When combined, the 
two techniques may establish a link between the turbulent flow and the far-field sound it produced. This 
rather laborious and cumbersome process is used in concept studies and parameter selection. 

The analysis presented in this paper is based on equation (4). The 2nd order terms on the right side of 
the above equation are referred to as self- and shear-noise source terms, respectively. 

 
3.1 Green’s Function 

 
A stationary point source with frequency ω and location

rx s  (superscript s denotes a source location) is 
considered in defining the GF 

 

 L e c e x xi t i t s( ) ( )G −

∞

−= −ω ω δ2 r r
 (5) 

 
Using an adjoint method (ref. 10), the far-field GF is given as 
 

 
G( , , ) ( , , ) cos ( )( cos )r rx x

R
e f r k ms ik R x

m
s s

m

s

ω
πω

θ ϕ ϕθ= −−

=

∞

∑1
4

1

0 , (6) 
 
where (R,θ,ϕ) are the observer spherical coordinates, with radius R measured from the jet exit 

centerline, polar angle θ  measured from the stream-wise jet axis, and azimuthal angle ϕ  is measured in a 
span-wise plane. Wave number is defined as k = ω/c∞ and r ≡ R sin θ. Function fm(r, k, θ) is a solution to 
the second-order compressible Rayleigh operator subject to appropriate matching conditions at the jet 
boundary (app. A). The linear operator L also supports instability waves, which for a jet are the well- 
known Kelvin-Helmholtz instabilities. Reference 11 argues that these waves are suppressed if the 
governing equations are solved in a frequency domain and if a time-harmonic response is assumed. 
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For a source type D Dt c e x xi t s/ [ ( )]∞
− −2 ω δ r r

, representative of the self-noise term in equation (4), the 

GF is denoted as $G , and is related to G as $ ( / )G G= − + ∂ ∂i U xsω 1 , which upon using 
equation (6) becomes 

 
 $ ( cos )G G= − −i M sω θ1  (7) 

 
Here Ms ≡ U(rs)/c∞ is the acoustic Mach number at the source location. 
 
The GF of interest in jet noise is associated with a moving singularity with source frequency ωs and 

convection velocity $i Uc . For self-noise we write 
 

 L Ge D
Dt

c e x U t x xi t i t
c t t
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( ) { ( ) ( )}−
∞

−= − −ω ω δ δ2
1

r r
 (8) 

 
Subscript t denotes a transverse location. The above GF is derived from equation (7) and a 

convolution integral as 
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Integrating with respect toτ and

ryt  yields 
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Using $G  from equations (7) and (6) into equation (10) and invoking the parallel flow assumption; the 

integration with respect to y1 yields a delta function 
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Where Mc = Uc/c∞ is the convective Mach number.  
Placing equation (11) in equation (10), the integration with respect to ω is readily carried out 
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Upon relating source and observer frequencies through the Doppler factor 
 

 ω ω
θ

=
−

s

cM1 cos
, (13) 
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the GF to equation (8) becomes 
 

 
G x x i

R
M
M

e f r k ms
s

c

ikR
m

s s

m

( , , ) ( cos )
( cos )

( , , )cos ( )r r ω
π
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θ
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1
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When the source is moving, the Doppler factor becomes singular in the direction θ = cos–1(1/Mc). By 

considering the source as non-compact (app. B), a modified Doppler factor is defined that should be used 
near this singularity. 

Equation (14) indicates that the adjoint equation should be solved at the observer frequency even 
though the source is moving. In addition, it illustrates that for a convecting type source, the dependence of 
the GF on the axial source location is purely implicit, i.e., through the flow definition at the jet slice. Once 
the adjoint equation is solved for given values of observer angle θ, Strouhal number St, and mode number 
m, function fm should be known at any arbitrary source locations rs on the jet slice. Strouhal number is 
defined using exit diameter and jet exit velocity St = ωD/(2πUJ). 

 
3.2 Multi-Pole Sources 

 
The far-field spectral density may be expressed as the integration of the sound spectral density per 

unit volume of turbulence with respect to the source volume
ry  (app. C). 

 

 p x y G x y G x y R y e d di2 2 2( , , ) ( , / , ) ( , / , ) ( , , )*r r r r r r r r r r r

r
ω ξ ω ξ ω ξ τ τ ξωτ

ξ

= − +
−∞

+∞zz  (15) 

 
Here R y( , , )r rξ τ  denotes a two-point fourth-order space-time correlation between source points 

r r r
y y1 2= − ξ /  and 

r r r
y y2 2= + ξ / separated by time τ and space

r
ξ . In a compact eddy approximation, the 

variation of the GF within the source region is usually neglected and the product GG* is approximated as 
the square of the magnitude of the GF at the center of the correlation

ry , and taken out of the above 
integral. The phase variation in the GF, however, could become a factor at high frequency when the 
correlation length scale exceeds the acoustic wavelength. The complex function fm appearing in the series 
summation of equation (14) contains the phase information of the GF. To simplify the analysis, a form of 
the phase factor applicable in the high-frequency limit is used here (app. D) 
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r
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ξ
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The above double integral, referred to as the wave-number frequency spectrum, may be expressed 

either in a fixed or a moving frame. In a convecting frame, 
r r
ξ ξ τm ci U= − $ , and 

R y R ym m( , , ) ( , , )r r r rξ τ ξ τ= , hence 
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A spectral coefficient for a two-point fourth-order correlation of stress component uiuj at points 
ry  

and 
ry ' is defined as (prime designates separation in space and time) 

 

 I y u u u u e e d dijkl i j k l
ik i( , ) ( )( )' ' .r rr r

r
ω τ ξξ ωτ

ξ

≡
−∞

+∞
−zz  (18a) 

 
Upon recognizing that − + = − +

r r r r
k k m

s. .ξ ωτ ξ ω τ , the above integral is written in a moving frame 
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Subscript m under the square bracket in equation (18b) denotes a moving frame two-point correlation, 

which is related to the nozzle-fixed correlation by an exchange of ζ1–Ucτ in the latter with (ζ1)m. The over-
bar points to a time-averaged quantity. Presence of double derivatives operating on the source terms of 
equation (4) indicates that the appropriate GF should ultimately be calculated for a singularity type 

 

 
D
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c
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i j
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s
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 (19) 

 
The analysis may be carried out as described in the convolution integral leading to equation (9). 

However, the source spatial derivatives are now moved to the GF prior to
ry integration. For example, an 

application of ∂ ∂ ∂2
1 1/ y y  to $ ( , ; )G

r rx y ω  in the integrand of equation (9) generates ( cos )−ik θ 2 as seen 
from equation (6). Subsequently, (kcosθ)4 multiplies sound intensity due to source 
correlation ( )( )' 'u u u u1 1 1 1 . A derivative of $G with respect to the span-wise source coordinates y2 or y3, acts 
on fm(rs,k,θ)cosm(ϕ–ϕs). The algebra is quite lengthy but relatively straightforward. It may be shown that 
to the first order of approximation, quadrupoles of self noise, once integrated azimuthally for a ring 
volume within an axisymmetric jet, relate to the axial component I1111. For an isotropic turbulence the 
result simplifies to 

 
 ( cos ) ( )1 4 2 4

1111− M k Is sθ ρ  (20) 

 
This, in view of equation (14), leads to the following expression for the sound spectral density per 

unit ring volume at radius rs 
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( cos )
( cos )
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F
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∞ ∑  (21) 

 
The above result is integrated over jet volume elements that radiate directly to the far field. Noise 

from sources internal to the jet requires special treatment due to reflection from solid boundaries. An 
approximate high-frequency solution for sound emission due to internal mixing is given in 
reference 12. 

It will be shown in section 7 that equation (14) scales like ρ1/2with jet density, hence sound spectral 
density in equation (21) scales with ρ3. 
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4. Source Model 
 

The axial correlation coefficient needed in equation (21) is obtained from equation (18) when all 
indices are set equal to one. Using the usual quasi-normal approximation for the joint probability 
distribution of turbulence (refs. 13 and 14), a fourth-order correlation is written as a product of second-
order tensors. 

 
 u u u u u u u u u u u u u u u ui j k i j k i k j i j k

' ' ' ' ' ' ' '( )( ) ( )( ) ( )( )l l l l= + +  (22a) 

 
A nozzle-fixed second-order correlation is written as  

 
 u u R i U hi j ij c

' ( , ) ( $ ) ( )
r r
ξ τ ξ τ τ= −  (22b) 

 
Appropriate modeling of a two-point velocity correlation is a crucial step in a physics-based 

prediction approach. As shown in reference 1 the best representation of the experimental measurements 
(refs. 15, 16, and 17) are obtained when exponential functions are selected to represent both spatial and 
temporal dependencies of the correlation (also see app. E) 

 
 f e h em

m o( ) , ( )/ /ξ τπξ τ τ≡ ≡− −l  (23) 

 

In equation (23), ξ ξm m≡| |
r

 is measured in a moving frame, and is equivalent to 
[( ) ] /ξ τ ξ ξ1

2
2
2

3
2 1 2− + +Uc if used in a fixed frame, and f is the scalar function that appears in the isotropic 

from of Rij.  
In an isotropic turbulence, various components of a two-point correlation are obtained from placing 

equation (23) in Batchelor’s isotropic turbulence model ref. 14)–for example, the fixed-frame axial 
component of the correlation is written in the following non-separable form 
 

u u u e e Uo
c1 1 1

2
2
2

3
2

1
2

2
2

3
2 1 21

2
' / / /( , ) [ ( ) ] , [( ) ]
r

l
lξ τ π

ξ
ξ ξ ξ ξ τ ξ ξπξ τ τ= − + = − + +− −  

 
Parameters l and τo denote the length- and time-scales of the correlation 

 
 l l≡ ≡c coκ ε τ κ ετ

3 2/ / , /  (24) 

 
Turbulence kinetic energy κ and its dissipation rate ε are usually provided through a RANS type 

solution and ( , )c cl τ  represent a pair of calibration constants. 
Using a quasi-normal approximation, and substituting equation (22b) in equation (18b) shows that 

 
 I y H R e ds s

m
ik

m

m

m
1111 11

22( , ) ( ) ( ) ,.r r r

r
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ω ω ξ ξ
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ξ= z −  (25) 

 

 H h e ds i s

( ) ( )ω τ τω τ≡
−∞

+∞z 2  (26) 
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Upon representing R m11( )
r
ξ  according to the homogeneous isotropic model of Batchelor (ref. 14) 

with f as defined in equation (23), it is shown (ref. 1) that  
 

 I y u H N ks s
1111 2 1

2 2 34
5

( , ) ( ) ( ) ( )r
l lω

π
ω=  (27) 

 
Here N k( )l  denotes a non-compactness factor (app. F), which appears in the analysis due to the 

phase variation of the GF. As was discussed in reference 1, N k( )l remains equal to 1.0 when 
0 2≤ <kl π , and decays rapidly as the eddy length-scale exceeds the wave-length of acoustic 
disturbances (i.e., kl > 2π ).  

Carrying out the integration in equation (26) in conjunction with equation (23) results in 
 

 H s o
s

o

( )
( / )

ω τ
ω τ

=
+1 2 2  (28) 

 
Upon using equations (24) and (28) in equation (27) and replacing u1

2 with 2κ/3 gives 
 

 I y c
c
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s

o
1111 2

3 7 2
4

2

16
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π
κ τ

ω ττ
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+

 (29) 

 
Equation (29) shows that at constant τo sound intensity scales with κ7/2. A third calibration constant 

Am should multiply equation (29) to account for the fraction of turbulence kinetic energy converted to 
sound. This factor is combined with other constants preceding κ7/2 

 

 I y A N ks
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21 2
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ω τ
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+
 (30) 

 
Equation (21) in conjunction with equation (30) is integrated over the jet volume (all rings within 

each slice) to calculate the far-field sound due to self-noise sources.  
The appropriate GF for shear-noise source term is similar to equation (14), but divided by 

ω(1–Mscosθ). Once the variations in dU/dr within the source correlation volume are neglected, the shear-
noise spectral density due to a unit ring volume may be approximated as  
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This expression remains small at and near mid angles; however it generates significant directivity 

away from 90° as opposed to the self-noise spectrum, which is more omni-directional.  
The coupling between self- and shear-noise terms is neglected in the following predictions. 
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5. Spectrum Function 
 

The spectral shape at 90°, also referred to as the master spectrum, is derived from the product 
k H N k4 ( ) ( )ω l , as seen from equations (21) and (30). It takes the following form once turbulence 
correlation is modeled according to equation (23) 

 

 F N ko
o

o

( ) ( )
( / )

( )ωτ ωτ
ωτ

≡
+

4

21 2
l  (32) 

 
In the absence of factorN k( )l , function F(ωτo) becomes infinite like ω2 as ω→∞. On the other hand, 

with increasing ω the phase variation in the GF becomes increasingly significant as the eddy correlation 
length exceeds the acoustic wavelength. The spectral function F(ωτo) decays at large frequencies as ω–3 
once factorN k( )l  is included (fig. 1). This practically amounts to limited self-cancellation of high wave-
number components of noise within the correlation. Also shown in this figure is the 90° spectrum 
function as calculated with temporal function h o( ) exp[ ( / ) ( / ) ]τ σ τ τ≡ − +2 2 2 . The small constant σ 
would assure high-frequency decay even with factor N k( )l  selected as 1.0; however the spectrum 
becomes narrower. A Gaussian temporal function exp( / )−τ τ2 2

o  generates a relatively narrow spectral 
range due to its steep roll-off at high frequency and may not be a suitable model for jet noise prediction. 

 
 

6. Numerical Evaluation of the Green’s Function 
 
In this section numerical calculation of the GF is presented for a range of parameters of common 

interest in jet noise prediction. A careful study of this non-causal GF and its association with the source 
location, frequency, and jet speed provides valuable insight into its contribution to a total solution. 

In a locally parallel flow, jet profiles (i.e., mean axial velocity and temperature) as defined at each 
stream-wise location x1, are utilized in solving the propagation equation (A1), subject to the boundary 
conditions defined in appendix A. The GF is calculated from the series summation equation (14)–and 
subsequently normalized and integrated azimuthally to define ring source directivity 

 

 D x x R G x x ds s s2
2 2

4
2

( , , ) ( ) ( , , )r r r rω π
π

ω ϕ
π

π

≡
−

+z  (33) 

 
Both stationary and convecting type sources are considered. Source convection velocity is defined as 

a weighted average of local and exit velocities as supported by measurements (ref. 18) 
 

 U r x U r x Uc j( , ) . ( , ) .1 1050 0 25= +  (34) 

 
Alternative expressions (ref. 19) for Uc based on local, exit, and ambient jet velocities are available 

and could readily be tested. When the denominator of equation (14) becomes singular, it is replaced with 
a modified Doppler factor (app. B).  

Mean flow predictions (RANS) were generated for a Mach 0.90 unheated jet using the Wind flow 
solver (ref. 20) available at the NASA Glenn Research Center. Source location 

ry  is identified through the 
ring radius rs and its distance from the jet exit xs

1 . 
Directivity D for a stationary ring source at one diameter from jet the exit, and for selected values of 

St from 0.10 to 5.0 is shown in figures 2(a) through (d). It is observed that sources in the proximity of the 
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jet centerline produce a larger directivity. The zone of silence grows noticeably in size with increasing 
frequency as expected. As seen in figures 2(c) and (d), the zone of silence may grow as large as 60° 
(relative to the jet axis) for the more energetic segments of the jet, i.e., the jet mixing layer. Figures 3(a) 
through (d) use the flow definition at xs

1 =7.5D to highlight the significance of the jet profile on sound 
refraction. It is noted that source strength should ultimately multiply the GF when calculating the actual 
sound spectrum.  

Source convection is known to amplify the radiated sound in the mean flow direction. This is 
illustrated in figures 4 and 5, which should be compared with the figures 2(b) and 3(b) for similar 
stationary sources. 

 
 

7. Acoustic Results 
 

A total of seven unheated cases (stagnation temperature ratio of 1.0) are shown in table 1, with the 
aerodynamic Mach number extending from 0.51 to 1.80. All nozzles have a 2 in. exit diameter. The first 
two set points are subsonic–and utilize an Acoustic Reference Nozzle (ARN2). The supersonic set points 
use Convergent-Divergent (CD) nozzles designed to provide perfectly expanded exit conditions using a 
Method of Characteristic approach. The fully expanded (design) Mach numbers are 1.185, 1.40, 1.50, 
1.66, and 1.80. Jet mixing noise was predicted on an arc R/DJ = 100, and compared with SHJAR data 
recently acquired at the NASA Glenn Research Center. Atmospheric attenuation has been removed from 
all measurements in order to make a lossless comparison with predictions. Although special care has been 
taken to test each CD nozzle at its design pressure ratio, shock-associated noise and screech-related spikes 
are noticeable in the measurements. RANS solutions were generated using the in-house Wind code with a 
standard κ−ε turbulence model. Upstream nozzle conditions were specified in terms of plenum 
temperature ratio Tr and the pressure ratio. 

 

 
 
 
 

An additional heated (nearly sonic) case, SP49, will also be considered to highlight the shortcomings 
in our hot jet predictions and to suggest possible solutions. 

Calibration constants c cτ , l  (see eq. 24) and Am (see eq. 30) are determined for the best fit with respect 
Mach 0.51 jet. The fidelity of the solution is then examined for the range of Mach numbers. The argument 
of the non-compactness factor k St D U cJ Jl l= ∞( )( / )( / )2π  would become self-similar across a wide 
range of Mach number when divided by the local acoustic Mach number U(rs)/c∞, as both factors l / DJ  
and UJ/U(rs) are now self-similar. This modified argument is deployed in noise predictions.  

Figure 6 shows the spectra for a Mach 0.51 cold jet at selected inlet angles. The self-noise component 
exhibits an omni-directional appearance as a result of the factor (1–Ms cosθ)6 in the numerator of 
equation (21). The shift in the spectral peak with angle is primarily due to the mean flow effects and is 
captured by the GF. Figure 7(a) shows similar comparisons in a Mach 0.98 jet. The agreement is 
generally good, both in level as well as the spectral peak location. Near the dominant radiation angle of 

TABLE 1.—UNHEATED JETS (TR = 1.0) 
Case Mach No. 

∞cU J /  
SP03 0.51 0.50 

SP07 0.98 0.90 

M1.18 1.185 1.047 

M1.40 1.40 1.186 

M1.50 1.50 1.245 

M1.66 1.66 1.33 

M1.80 1.80 1.40 

TABLE 2.—HEATED JET (TR = 3.14) 
Case Mach No. 

∞cU J /  

SP49 0.90 1.48 
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the Mach 0.98 jet, however, differences start to emerge. The data point to a distinct spectral peak near the 
150° inlet angle and at the Strouhal number of 0.20. It is suggested here that this peak may be influenced 
by the Kelvin-Helmhotz instabilities, which manifest themselves at high subsonic and supersonic Mach 
numbers. These waves dominate the distinct directivity of high-speed jet noise at shallow angles, and 
their peak radiation frequency is sometimes scaled with Helmholtz number (He ≡ f DJ/c∞).  

Similar comparisons are also shown in figure 7(b) for the five supersonic jets. The presence of shock 
noise in the spectra is quite visible. These predictions exhibit increasing deterioration at shallow angles. 
The 150° spectra peak at a lower frequency relative to measurements and show a deficit in noise level. It 
is conceivable that, in addition to the instability-related noise, jet spread could also play a role at high 
speeds and near the zone of relative silence. A parallel flow model tends to exaggerate the High 
Frequency (HF) refraction (refs. 21 to 23). The actual decay rate into the zone of silence is relatively less 
steep when the HF-GF is calculated in a spreading jet. The effect of jet spread on Low Frequency (LF) 
noise is less clear and yet to be examined. For long waves, the locally parallel flow assumption is more 
likely to deteriorate when the mean flow is not slowly varying on a wavelength scale. On the other hand, 
it is also argued that refraction is relatively weak at low frequency. 
 
 

8. Hot Jets 
 

When the acoustic Mach number exceeds the sonic point, the factor (1–Ms cosθ) appearing in the 
denominator in the compressible Rayleigh equation becomes singular. The numerical integration should 
now continue along an appropriate path in the complex plane, and around the singularity 
(ref. 10). A better illustration of the GF that shows its scaling with respect to square root of density is 
defined in equation (35). The factor (1–Ms cosθ) is also multiplied by the GF to demonstrate the transition 
into the zone of silence at cosθ  = 1/Ms. 

 
 Λ( , , ) ( cos )( / ) ( , , ).r r r rx x M D x xs s s sω θ ρ ρ ω≡ − ∞

−1 0 5  (35) 

 
Factor D2 was defined in equation (33). As noted above, the appearance of the density factor in 

equation (35) solely serves to show that the GF scales with the square root of density at moderate to high 
frequency. This is examined by observing the behavior of the GF at 90°. 

Figures 8(a) and (b) show the GF for a stationary ring source in a Mach 0.90 hot jet, and at a 
temperature ratio of Tr = 2.78. At this temperature the acoustic Mach number is supersonic 
(i.e., U/c∞ = 1.45). Inspection of the GF at θ = 90° and at St = 0.10 shows some dispersion with the source 
location (fig. 8(a)). Figure 8(b) shows that the above density scaling is successful at St = 1.0. More 
importantly, this figure demonstrates that in the mid- to high frequency range, the GF equation (14) scales 
like (1–Ms cosθ)–1 outside its zone of silence 

It is also evident that compared to unheated subsonic jets discussed earlier, the zone of silence has 
grown in size irrespective of the frequency (see figs. 3(a) and 8(a)). The implications are that the above 
GF is not going to provide the required noise directivity near the peak radiation angle. Figures 9(a) and 
(b) show similar results for a convecting ring source. Figure 10 compares the 90° spectrum in a 
Mach 0.801, Tr =3.0 hot jet as calculated with an exact GF as well as a density-scaled GF (i.e., GF is 
simply set equal to ρ1/2/ρ1/2). The difference is fairly small and limited to the low frequency range. 

The spectrum at R/DJ = 100 at SP49 (table 2) is also compared with the SHJAR data as seen in 
figure 11. Consider the 90° spectrum, which exhibits a deficit of 3 to 8 dB relative to measurements. This 
spectrum is entirely defined through equation (21), which according to the preceding arguments scales the 
sound spectral density asρ3, in addition to the usual κ7/2 scaling. Therefore, the mean density reductions 
caused by heat addition need to be compensated for by other resources in order to reach the required noise 
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level. The choices available are: (a) additional noise sources due to heat; (b) changes in turbulence and/or 
its scales; or some combination of (a) and (b). 

Lighthill’s formulation of the acoustic analogy shows that in the absence of the viscous stress tensor, 
the source consists of an additional term( ' ' )p c− ∞

2 ρ . When entropy fluctuations are neglected, this 
becomes ( ) 'c c2 2− ∞ ρ  which is not necessarily small compared to terms usually kept in the equation. 
Unfortunatelyρ'  now appears on both sides of the equation. Other forms of the analogy have tried, for 
example, new definitions for the dependent variable, in an effort to restrain the impact of those 
inconvenient terms that are usually neglected. It is argued (ref. 7) that the second term on the right hand 
side of equation (3) is of the order of ( / ) ( / )U c u2 2 l  relative to the first term that scales like ( / )u2 l . In the 
Mach 0.90 example seen in figure 11, the second term has a magnitude of 0.81 compared to the first, 
which makes it relatively significant. Modeling of this term, however, poses new difficulties due to the 
appearance of p' in the source. 

In the latest formulation of the acoustic analogy, reference 24 selects a new dependent variable, 
referred to as the generalized pressure, and writes the third-order wave equation in a form that does not 
include the dependent variable as part of the source. 

Tam et al. (ref. 25) modified their kε turbulence model in order to improve their fine-scale predictions 
for hot jets. They proposed a new addition to the turbulent viscosity, as related to the mean density 
gradient, which accounts for enhanced mixing and increased growth of the shear layer when jets are hot. 
More recently (ref. 26), they modified their two-point space-time correlation model to increase its decay 
rate for hot jets. This new model, which takes advantage of four additional empirical parameters, provides 
improved prediction for hot jets at mid-angles. 

Shown in figures 12(a) through (c) are the predicted turbulent kinetic energy for the 2 in. convergent 
nozzle at set points SP03, SP07, and SP49 (see tables 1 and 2), using a modification to the baseline κ−ε 
model in the Wind code that incorporates variable diffusion coefficients (ref. 27) in the transport 
equations for κ and ε. The objective of this modification was to enable more accurate calculation of the 
jet potential core region, and in particular, the faster transport of turbulent kinetic energy to the jet 
centerline observed in experiments, which has not been captured well by standard κ−ε models. Using this 
modified κ−ε model, favorable agreement with the PIV measurements (ref. 16) are observed in the 
turbulence levels, as well as the shortening of the core length due to the heat–which is the product of a 
faster jet spread and improved mixing. Consequently, it is quite compelling to attribute the noise deficit 
observed in the predictions of figure 11 to heat-related sources, and/or changes in the turbulence scales, 
which in turn, may influence the decay rate of a two-point correlation. 

Near the downstream jet axis, the instability-related noise quickly overwhelms the hot jet solution. 
The problem is also compounded due to a gradual deterioration in the parallel flow model at higher jet 
speeds and at small angles, as discussed in the latter part of section 7. 
 
 

9. Assumptions and Future Work 
 

This paper details some important features of the source and the propagation Green’s function in a 
model-based jet noise prediction methodology. A number of hypotheses are made in calculating the far-
field sound: 

A careful examination of the propagation filter shows that in a locally parallel flow the zone of 
silence grows increasingly large with jet velocity. It could encompass a sizeable region near the 
downstream jet axis as the acoustic Mach number becomes supersonic. A parallel flow model is known to 
increasingly exaggerate the high frequency refraction at higher jet speeds (refs. 21 and 23). When the GF 
is calculated in a truly spreading jet, the actual decay rate into the cone of relative silence is less steep. 
Low frequency noise may also be influenced by the jet spread–although the effect is less clear and needs 
to be determined. In general, a parallel flow model is expected to provide reliable sideline predictions, 
and to become effective in a broader angle range at lower jet speeds.  
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TABLE 3.—LIST OF JENO ASSUMPTIONS 

 Assumption Reference 
1 Turbulence is assumed as quasi-normal in order to reduce the order of the fourth order 

correlations 
eq. 22(a) 

2 Fluid viscosity and heat conduction are not considered to be important in sound 
generation. 

eq. 1 

3 Turbulence is considered as isotropic eq. F1; also ref. 14 
4 Exponential spatial and temporal functions are utilized to model a two-point correlation 

function 
eq. 23 

5 A non-compact source is considered eq. 27 
6 The non-causal GF is calculated for a locally parallel flow eq. 1 
7 The second component of the GF, believed to be associated with the instability waves, is 

not addressed 
see ref. 3 

8 The heat-related sources were not modeled see equation after eq. 4 
9 Two constants are utilized in connection with the time-and length scales. 

Third constant relates turbulent kinetic energy conversion to sound. 
Fourth constant removes singular behavior of the Doppler factor. 

eq. 24 
eq. 30 
eq. B6 

 
The second component of the Green’s function (i.e., the causal GF) is instability related, and 

dominates the spectrum at shallow angles to the jet axis. This component needs to be addressed as a high 
priority in supersonic jets. Some preliminary results calculated for a simplified source in a model jet 
(ref. 3) show encouraging qualitative agreement with data.  

It was also shown that a non-compact source model predicts a proper high-frequency roll-off. As the 
wavelength of the sound generated within a turbulent eddy becomes shorter than the correlation length-
scale, a phase cancellation is initiated that shapes the spectral roll-off at high frequency. It is not 
surprising that this fall-off should be sensitive to the spatial form of the correlation in relationship to the 
wavelength of the sound it generates. Various spatial functions such as Gaussian versus exponential 
become distinguishable from one another when the source is considered as non-compact.  

Although the formulation and validation cases presented here are limited to unheated jets, we took the 
liberty to evaluate a sample hot case to demonstrate the shortfalls and possible solutions. The deficit in the 
predicted noise level was attributed to any number of the following:  
 

• Calibration of the usual two-equation turbulence model. 
• Possible additional sources such as enthalpy fluctuations. 
• Decay of a two-point space-time correlation as affected by heat. 
• The effect of heat on turbulence length- and time-scales. 

 
Experimental studies are currently underway at the NASA Glenn Research Center to address items 

(c) and (d) above. In addition, turbulence model development work is ongoing in the Wind code with the 
addition of linear two-equation and explicit algebraic stress models specifically calibrated for jet flows. 
However, the favorable comparisons of PIV measurements with RANS calculations using a modified κ−ε 
model presented here indicate that the RANS input is not the sole source of disagreement between 
calculated and experimentally measured jet noise. It is hoped that these efforts may shed light on this 
somewhat elusive relationship between the turbulence in hot jets and its far-field noise.  

To reiterate, version 1.0 of JeNo is applicable to cold, round jets of subsonic velocity. It correctly 
predicts sound for all angles at such conditions. It does not correctly predict hot jets, jets of strong 
asymmetry, or jets with supersonic (relative to ambient speed of sound) exit velocities. 
 



NASA/TM—2005-213827 17 

10. Appendix A.—Numerical Solution to Compressible Rayleigh Equation 
 

In a cylindrical coordinate system, the second order compressible Rayleigh operator governing 
function fm is written as (ref. 10) 
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where prime denotes a radial derivative. Having specified the jet profiles M = U(r)/c∞ and 

c2 = γℜT(r), the numerical solution to (A1) starts with fm = amrm as r→0 and continues to the jet boundary 
at r = Ro where the function and its derivative are matched with the appropriate outgoing solution outside 
the jet. Constant am thus becomes 
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In equation (A2), prime as appearing on the cylindrical Bessel and Hankel functions points to a 

derivative with respect to the argument χ = kRo sin θ. 
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11. Appendix B.—Doppler Factor Singularity 
 

When a compact source is moving towards an observer at the speed of sound, equation (13) shows 
that the observer frequency ω→∞ as Mc cosθ→1. We may introduce a non-compact source in 
equation (6) by allowing the axial source position to be a complex number, with a small imaginary part 

 
 x x i Ms s

c1 1 1 0→ + →( ),α α  (B1) 
 
Mathematically, real parameter α allows a slight perturbation in the vicinity of the actual source 

location xs
1 . Equation (11) is written as 
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Note that when the factor multiplying y1 in the exponent of the above integrand is not zero, small 

parameter α should be selected appropriately to let the integrand converge at large y1 
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Thus, the integral equation (B3) approaches zero as a→0, (i.e.,β+→β–). The delta function in 

equation (B2) is subsequently placed in equation (10). The integration with respect to ω requires  

 ω ω θ α θ αs
c cM i M as= − − →[( cos ) cos ], .1 02  (B4) 

Since frequencies are real numbers, we may now define the modified Doppler factor as the magnitude 
of the above complex frequency 

 ω ω θ α θs
c c cM M as M= − + →[( cos ) ( ) ] , cos/1 12 2 1 2  (B5) 

or 

 ( cos ) [( cos ) ] /1 1 2 2 2 1 2− → − +M M Mc c cθ θ α  (B6) 
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12. Appendix C.—Far-Field Spectral Density 
 

The acoustic pressure fluctuation at the observer point 
rx  and time t resulting from source Q emitting at point 

ry  
and time t1 is 

 

 p x t G x t y t Q y t dt dy( , ) ( , ; , ) ( , ) ,r r r r r zz 1 1 1  (C1) 
 
where 

 

 G x t y t G x y e di t t( , ; , ) ( , , ) ( )r r r r
1

1
2

1=
−∞

+∞
− −zπ

ω ωω , (C2) 

 
and G x y( , , )r r ω is an appropriate frequency-domain Green’s function. The sound spectral density is a Fourier 
transform of the auto-correlation function 
 

 p x e d p x t p x t dti2 ( , ) ( , ) ( , ) .r r rω τ τωτ= +
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+∞
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Upon placing equation (C1) in equation (C3) we find 
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Equation (C2) is now placed in the preceding expression to obtain 
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The integration with respect to t gives 2πδ(ω1+ω2), which is followed by an integration with respect to ω2, 

resulting in 
 

 p x e d G x y G x y Q y t Q y t ei

ytyt

i t2
1 1 2 1 1 1 2 2

1
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1 1
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The integration with respect to τ gives a delta function 
 

 e di ( ) ( ).ω ω τ τ πδ ω ω+

−∞

+∞z = +1 2 1  
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Subsequent integration with respect to ω1 results in 
 

 p x G x y G x y Q y t Q y t e dt dt dy dy
ytyt

i t t2
1 2 1 1 2 2 1 2 1 2

2211
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We now require that source function Q be a stationary function, i.e. Q = 0 when t T , for some large time T. 

For a stationary source, the average value  
 

 Q y t
T

Q y t dt
T

T

T

( , ) lim ( , )r r2 21
2

 
  z  (C6) 

 
remains finite. Let  

 

 q y T Q y t e dt
T

T
i t( , , ) ( , ) .r rω

π
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−

+z1
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 (C7) 

 
We define a time-domain cross-correlation  
 

 R y Q y t Q y t
T

Q y t Q y t dt
T

T

T

( , , ) ( , ) ( , ) lim ( , ) ( , )* *r r r r r rξ τ τ τ≡ + = +
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1
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where 
r
ξ  and τ denote the spatial and temporal separations between points 

r r r
y y1 2= − ξ / , 

r r r
y y2 2= + ξ /  and 

* indicates a complex conjugate. The Fourier transform of the cross-correlation function is given as 
 

 Q y R y e di
12 ( , , ) ( , , )r r r rξ ω ξ τ τωτ=

−∞

+∞z , (C9) 

 
and is related to the spectral densities at points 

ry1 and 
ry2 
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1
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Expression (C10) represents the spectral density for a two-point space-time correlation. Using the above 

equations in (C5) and noting that for a stationary process, the spectral intensity in now divided by 2T we find 
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or 

 p x G x y G x y Q y d dy
y

2
122 2( , ) ( , / , ) ( , / , ) ( , , ) .r r v r r v r r r r r

rr
ω ξ ω ξ ω ξ ω ξ
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Upon using equation (C9) in equation (C12), the spectral density per unit volume of turbulence at

ry  is given as 
in equation (15). 
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13. Appendix D.—Hase Variation of the Green’s Function 
 

The phase factor of a high-frequency Green’s function for a convecting source, in the notation of 
reference 5 is 

 

 exp{ [ ( ) ( ) sin ]}ik R n
k

r Rs
n+ − + −ϕ ϕ ς θ2 , (D1) 

 
where R denotes a source to observer distance, which in the present notation should be replaced with 

( )r rx y− , and 

 ς
δ

n n
r

r

r Q r dr( ) ( ) ,= z  (D2) 

 
and rδ is the zero crossing of the shielding function Qn(r), 
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The phase variation of the GF between source points 

ry1 and 
ry2 becomes 

 

 exp{ [ cos ( )]}ik n
k
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n
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and 
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The second term on the right hand side of (D5) signifies the effect of the refraction on phase. To the 

first order of approximation, this term may be neglected compared to the first term, which reflects the 
variations in phase due to source location only. As k→∞, equation (D4) becomes 

 
 exp{ [ cos sin ]}ik r s∆ ∆ξ θ θ1 + , (D6) 

 
which is recognized as exp( . )ik

r r
ξ . 
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14. Appendix E.—Space-Time Correlation Models 
 

When confronted with selecting the functional forms of the space-time correlation of velocity in a jet, 
several forms can be considered. Historically, these have been chosen partly based upon mathematical 
convenience, partly on data, and partly on compatibility with equations of motion. On the mathematical 
convenience, a model which has independent functions of space and time (in a moving frame) has often 
been chosen. And among functional forms for these independent functions, the Gaussian function has 
often been utilized for its ease of use in subsequent integrals. The Gaussian form also has the property of 
a zero derivative at the origin, making its Fourier transform integrable.  

Measurements made with hot-wire probes, shown here from reference 17, and supported by PIV 
measurements (ref. 16), show that a Gaussian function is not particularly well-suited for describing the 
form of the space-time correlation near the origin. These data were acquired in a Mach = 0.50 cold jet 
flow, and show the behavior of the correlation function in the axial and radial separations. Figures E1 and 
E2 show the correlation of the axial and radial components, respectively, of velocity at three different 
locations in the jet: x/DJ =4, r/DJ =0.50 (lipline); x/DJ =8, r/DJ =0.50; and x/DJ =20, r/DJ =1.25. In each 
figure, the upper set of carpet plots show the correlation as a function of time delay and axial separation, 
while the lower plots show the correlation as a function of time delay and radial separation. There are 
interesting subtle variations in the correlations at the three locations in the jet, but they all show a very 
strong peaked behavior near the origin. Future versions may benefit from turbulence models which pick 
up the more subtle behaviors of these correlation functions, but at this time single-exponent models, such 
as equation 23, are better supported by data than Gaussian forms. 
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15. Appendix F.—Non-Compactness Factor 
 

When wavelength of the acoustic disturbances is small relative to the correlation length scale 
(i.e., λ < l), it is shown (ref. 1) that the axial correlation coefficient I1111 (defined in eq. 25) consists of a 
non-compactness factorN k( )l  at high frequency. For example, using an exponential spatial function 
(see eq. 23) in the two-point correlation function of Batchelor, the axial correlation component R11 
becomes 
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2 1 2 f e l  (F2) 

 
Note that for brevity, ξ is used here as the separation vector in a moving frame. Using (F2) in (F1) 

results in 
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Upon placing (D3) into equation (25) we find 
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The above integration my be performed in a spherical coordinate system r

ξ ξ α ξ α φ ξ α φ= ( cos , sin cos , sin sin )  and by selecting dummy variable 
r
ξ  such that ξ1 aligns with 

direction of radiation 
r
k  
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This leads to equation (27) with the non-compactness factor given as 
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The non-compactness factor thus becomes a function of the spatial form of the correlation. For 

example, when a Gaussian function )/exp()( 22 lπξξ −=f  is placed in (F1), equation (27) should be 
calculated from  
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17. Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.—Spectral shape function at 90° with 
temporal function defined as: exp( / )− τ τ o , 
solid line; exp{ ( . / ) }.− +0 42 2 2 0 50τ τ o , dash-dot; 
exp( / )−τ τ2 2

o , dashed line. 
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Figure 2(a).—Directivity D x x s( , , )

r r
ω  due to a stationary ring 

source in a Mach 0.9 unheated jet at St = 0.10, 
x Ds

J1 / = 1.0 and rs/DJ: 0.0 (solid line); 0.50 (dashed line); 
1.0 (dash-dot). 
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Figure 2(b).—As figure 2(a) but for St = 0.25. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2(c).—As figure 2(a) but for St = 1.0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2(d).—As figure 2(a) but for St = 5.0. 
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Figure 3(a).—Directivity D x x s( , , )
r r

ω  due to a 
stationary ring source in a Mach 0.9 unheated 
jet at St = 0.10, x Ds

J1 / = 7.5 and rs/DJ: 0.0 (solid 
line); 0.50 (dashed line); 2.0 (dash-dot). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3(b).—As figure 3(a) but for St = 0.25. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3(c).—As figure 3(a) but for St = 1.0. 
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Figure 3(d).—As figure 3(a) but for St = 5.0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.—Directivity D x x s( , , )
r r

ω  due to a convecting 
ring source in a Mach 0.9 unheated jet at observer 
St = 0.25, x Ds

J1 / =1.0 and rs/DJ: 0.0 (solid line); 
0.50 (dashed line); 1.0 (dash-dot). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.—As figure 4 but for a ring source at 
x Ds

J1 / =7.5 and rs/DJ: 0.0 (solid line); 
0.50 (dashed line); 2.0 (dash-dot). 
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Figure 6.—Spectra in Mach 0.51, Tr =1.0 (SP03) jet at indicated inlet angles and at R/DJ = 100. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7(a).—Spectra in Mach 0.98, Tr =1.0 (SP07) jet at indicated inlet angles and at R/DJ = 100. 
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Figure 7(b).—Comparison between calculated spectra and data at indicated inlet angles at 
r/DJ = 100. (a) MJ =1.185, (b) MJ =1.40, (c) MJ =1.50, (d) MJ = 1.66, (e) MJ = 1.80. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8(a).—Directivity Λ( , , )
r r
x x s ω  due to a 

stationary ring source in Mach 0.9, Tr=2.78 jet 
at St = 0.10, x Ds

1 / J=7.5 and rs/DJ: 0.0 
(solid line); 0.50 (dashed line); 2.0 (dash-dot). 
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Figure 8(b).—As figure 8(a) but for a stationary 
ring source at St = 1.0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9(a).—As figure 8(a) but for a 
convecting ring source at observer 
St = 0.10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9(b).—As figure 8(a) but for a 
convecting ring source at observer St = 1.0. 
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Figure 10.—Far-field spectrum at 90° in a Mach 
0.801, Tr =3.0 jet. Exact Green’s function 
(solid line); density-scaled GF (dashed line). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.—Spectra in Mach 0.90, Tr =3.14 (SP49) jet at indicated inlet angles and at R/DJ = 100. 
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Figure 12(a).—Distribution of turbulent kinetic energy (SP03). 
Top half, RANS prediction; bottom half, PIV measurements. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 12(b).—Distribution of turbulent kinetic energy (SP07). 
Top half, RANS prediction; bottom half, PIV measurements. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12(c).—Distribution of turbulent kinetic energy (SP49). 
Top half, RANS prediction; bottom half, PIV measurements. 
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Figure E1.—Space-time correlation of '11uu . 

 
 
 

 
 

Figure E2.—Space-time correlation of '22uu . 

 
A comparison of the measurements with model forms using Gaussian 

and exponential functions is shown in reference 28. 
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Prediction of Turbulence-Generated Noise in Unheated Jets
Part 1: JeNo Technical Manual (Version 1.0)
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RTA, 216–977–1120.

The model-based approach, used by the JeNo code to predict jet noise spectral directivity, is described. A linearized form
of Lilley’s equation governs the non-causal Green’s function of interest, with the non-linear terms on the right hand side
identified as the source. A Reynolds-averaged Navier-Stokes (RANS) solution yields the required mean flow for the
solution of the propagation Green’s function in a locally parallel flow. The RANS solution also produces time- and
length-scales needed to model the non-compact source, the turbulent velocity correlation tensor, with exponential
temporal and spatial functions. It is shown that while an exact non-causal Green’s function accurately predicts the
observed shift in the location of the spectrum peak with angle as well as the angularity of sound at low to moderate Mach
numbers, the polar directivity of radiated sound is not entirely captured by this Green’s function at high subsonic and
supersonic acoustic Mach numbers. Results presented for unheated jets in the Mach number range of 0.51 to 1.8 suggest
that near the peak radiation angle of high-speed jets, a different source/Green’s function convolution integral may be
required in order to capture the peak observed directivity of jet noise. A sample Mach 0.90 heated jet is also discussed
that highlights the requirements for a comprehensive jet noise prediction model.






